Refinement of the Structure of Potassium Heptafluoroniobate, K₂NbF₇, from Neutron-Diffraction Data*

BY GEORGE M. BROWN AND LEWIS A. WALKER[†]

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

(Received 25 May 1965)

The crystal structure of K₂NbF₇, determined originally from two-dimensional X-ray data, has been refined by the method of least-squares with three-dimensional data. The refinement included adjustment of the scattering factors of niobium and potassium relative to the fluorine scattering factor. For potassium the new value 0.370 ± 0.004 cm⁻¹² was found. Effects of extinction were minimized by omitting from the final refinement a number of the observed *F*² values as a function of observed intensity. Shifts of atomic positions by as much as 0.15 Å occurred in the refinement, but the general description of the structure, including the description of the NbF₇²⁻ ion, remains unchanged. The standard errors of the coordinates are about 0.001 Å for the niobium atom and 0.002 to 0.003 Å for the fluorine atoms a nearly ideal case for use of the 'riding' model in calculating bond-length corrections, and the Nb-F bond lengths have been corrected accordingly. Exceptionally large vibrational displacements of two of the fluorine atoms seem plausible in view of the packing in the crystal.

Introduction

Our interest in the crystal structure of potassium heptafluoroniobate, K₂NbF₇, arose in connection with recent work (Keller, 1963) in this laboratory on the Raman and infrared spectroscopy of complex ions of niobium(V) in hydrofluoric acid solutions. The original determination of the K₂NbF₇ structure (Hoard, 1939), from two zones of X-ray reflections showed that the NbF_7^{2-} ion has approximately the symmetry C_{2v} . The polyhedron of fluorine atoms was visualized as derived from an NbF_6 group in the form of a trigonal prism by the addition of a seventh fluorine atom through the center of one square face, followed by some distortion. Although there was no particular reason to question the essential correctness of this structure, we thought it desirable to confirm the coordination about niobium and to refine the structure from three-dimensional neutron data. For K₂NbF₇ it is advantageous to employ neutron analysis, rather than X-ray analysis, for two reasons. First, the narrow range of values of the neutron scattering factors of K, Nb, and F nuclei ensures that the structural parameters of all atoms will be determined with nearly the same degree of precision. Second, the low absorption coefficient of K₂NbF₇ for thermal neutrons makes it possible to obtain intensity data virtually free from absorption errors.

Experimental data

Unit-cell parameters

The unit-cell parameters (Table 1) were redetermined from measurements of angles of Bragg X-ray reflections from a small crystal specimen. The measurements were made on a Picker diffractometer fitted with a General Electric single-crystal orienter. The translations a, b, c were determined from high-order reflections h00, 0k0, and 00l for which the Cu $K\alpha_1-\alpha_2$ doublet was resolved. The monoclinic angle β was determined directly by measurement of the angles between the reciprocal axes \mathbf{a}^* and \mathbf{c}^* . The new cell parameters are close to those of Hoard, but more precisely determined.

Table 1.	Unit-cell	parameters	of	K ₂ NbF ₇
----------	-----------	------------	----	---------------------------------

	Hoard*		This research [†]
а	5·85 Å		5.846 ± 0.003 Å
b	12.67		12.693 ± 0.006
с	8.50		8.515 ± 0.004
β	90°		$90.0^{\circ} \pm 0.1^{\circ}$
Ż		4	_
Space group		$P2_{1}/c$	

* 'Estimated limits of error' in translations are 0.02 to 0.03 Å.

[†] The wavelengths assumed for Cu $K\alpha_1$ and Cu $K\alpha_2$ radiation were 1.54050 and 1.54434 Å. The indicated error for each parameter is the root-mean-square deviation from the mean of several observations.

Intensity data

A crystal specimen weighing 18.5 mg was selected from a bottle of reagent-grade material purchased from the Kawecki Chemical Company. Its over-all dimensions were about 1.3, 1.9, and 3.6 mm. Preliminary X-ray precession photography established that it was a single crystal. The crystal was mounted with the *a* axis (3.6 mm dimension) parallel to the spindle axis, then sealed inside a thin-walled tube of quartz, for protection from moisture.

Intensity data were recorded by the θ - 2θ step-scan method with the Oak Ridge automatic neutron dif-

^{*} Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.

[†] Summer Research Participant, 1963. Present address: Department of Chemistry, Goucher College, Towson, Maryland.

fractometer (Busing, Smith, Peterson & Levy, 1964). I term (0.03 F_{0}^{2}) was added to the variance σ_{F}^{2} of the Counts were recorded at 0.1° intervals over a 2θ range of 5° centered around the expected peak position of each reflection. For each point in the scan counts were registered during the period (~ 8 seconds) required for a counter monitoring the primary beam to register a preset fixed count. The neutron wavelength was 1.078 Å. For the [100] and [001] zones, data were recorded out to 111° in 2θ , the limit of the accessible range. Subsequently the general reflections hkl were recorded in successive concentric shells in reciprocal space to the 2θ limit of ~85°, beyond which it appeared that the number of data with intensities above background would be small. Two reflections of high intensity, 400 and 060, were recorded at regular intervals, after every 50 observations, as a check on the performance of the instrument and the stability of the crystal. A number of other reflections were also observed more than once. In all, 1752 observations were made, corresponding to 1355 independent reflections.

Preliminary data processing

In a series of calculations on the CDC 1604 and IBM 7090 computers the raw data on punched paper tape were converted into a set of least-squares data on cards. After a preliminary step* in which the net count N and the background count B under each peak were computed, the calculations* implied by the following equations were performed:

$$F_{a}^{2} = A_{c}SLN \tag{1}$$

$$\sigma^{2}_{F^{2}} = (A_{c}SL)^{2}[N + (1+r)B]$$
⁽²⁾

where F_o^2 is the observed value of the square of the structure factor; $\sigma^{2}_{F^{2}}$ is the variance of F_{o}^{2} from the counting statistics; S is a scale factor derived from the weight of the crystal specimen and measurements of the intensity of reflection 400 from a standard crystal of sodium chloride; A_c is the correction factor for absorption; L is the Lorentz factor, $\sin 2\theta$; and r is the ratio of the number of points under the peak to the number of neighboring exterior points used in establishing the background count.

In the calculation of the absorption factors A_c (Wehe, Busing & Levy, 1962) the crystal specimen was described by specifying the equations of 13 surface planes. The value 0.243 cm⁻¹, calculated from tabulated neutron cross sections (S.W.Peterson, unpublished) was used for the linear absorption coefficient. The largest factor A_c was 1.044.

For those reflections for which two or more observations were made the average F_{ρ}^2 values and their appropriate variances were computed, using weights equal to the reciprocals of the variances of the individual observations. Negative values of F_o^2 were replaced by zero values. Finally, an empirical correction

average F_{a}^{2} for each independent reflection. The extra term makes allowance for possible instability in the instrument, errors in corrections for absorption, deficiencies of the structure model, and so forth (see Peterson & Levy, 1957).

The entire procedure followed typically in neutrondiffraction analyses in this laboratory is presented in more detail in an earlier paper on problems and procedures in data collection (Brown & Levy, 1964). The same paper presents a statistical analysis of consistency among the many replicate measurements of the two standard reflections, 400 and 060, of K₂NbF₇.

روی اور دو مدینه می می می می داده این او کردی Refinement

Refinement was carried out by the method of least squares, using various versions of the full-matrix leastsquares program of Busing, Martin & Levy (1962). The function minimized was $\sum W_{F^2}(F_o^2 - F_c^2)^2$, where F_o^2 and F_c^2 are the observed and calculated structure-factor squares, and w_{F2} is the weight of the observation F_o^2 , given by $w_{F2} = 1/\sigma^2_{F2}$.

When the 288 data of the [100] and [001] zones had been recorded and processed, a least-squares calculation was made to establish preliminary values of the isotropic thermal parameters B of the various atoms, since the work of Hoard did not provide any thermal parameters. In three cycles of least-squares adjustment, in which Hoard's atomic coordinates were held fixed, the values of B spread from the common assumed input value 1.0 Å² through the range from 1.03 Å² (for niobium) to 4.23 Å². The value of the discrepancy index

$$R_{F^2} = \Sigma |F_o^2 - F_c^2| / \Sigma F_o^2$$

was reduced from 0.57 to 0.21 (omitting 28 reflections of uncertain sign).

Fourier syntheses along [100] and [001] were computed with the use of the observed structure factors F_o with the signs of the structure factors F_c calculated after adjustment of the thermal parameters. The maps of nuclear scattering density were very similar to the electron-density maps of Hoard, except for the expected changes in relative peak heights. It was clear at this stage that the Hoard structure is basically correct.

The subsequent least-squares refinement on the three-dimensional data was generally straightforward. Special care was exercised, however, to evaluate the extent of extinction errors in the data and to minimize the effects of these errors. While refining the structural parameters, we were also concerned with the possibility of obtaining more reliable relative values of the scattering factors of potassium, niobium, and fluorine. Accordingly, we carried out six different refinements to convergence, as described in Table 2 and explained below. The convergence in every case was such that the final shift for each parameter was less than 0.02 times the corresponding standard error.

^{*} The indicated calculations were performed with computer programs of W.R.Busing.

Soon after the three-dimensional refinement was started, comparison of the values F_o^2 and F_c^2 showed that a number of the values F_o^2 for reflections of high intensity were in error because of extinction. To estimate the extent of the errors, we examined plots of the functions $\langle F_o^2 \rangle / \langle F_c^2 \rangle$ and $\langle |F_o^2 - F_c^2| / \sigma_{F_o} \rangle$ against $\langle I_o \rangle$, where $I_o = F_o^2 / \sin 2\theta$ and the brackets $\langle \rangle$ denote an average value over a small range of I_{o} . In Fig. 1, curves (a) and (b) show the plots of these functions after refinement to convergence of the atomic coordinates and anisotropic thermal parameters* and the scale factor, when 1354 F_{o}^{2} data** were included (refinement A in Table 2). The plots suggest that the F_a^2 values corresponding to I_o greater than about 40 (in units of 10^{-24} cm²) are nearly all low by a few per cent because of extinction. When refinement was carried to convergence omitting the data corresponding to $I_0 > 40$, the scale factor on F_o^2 decreased, and examination of the new fit of the data showed that even more reflections are affected by extinction. Thus, estimation of the extent and magnitude of extinction errors is necessarily an iterative process. In our final refinement (E) we have excluded 112 observations, all those with $I_0 >$ 19.80. The curves (c) and (d) of Fig. 1 show the general agreement of F_o^2 and F_c^2 values in this case. The choice of the final cut-off level of I_o is somewhat arbitrary; but, fortunately, it appears not to be critical. Thus, comparisons of entries B and D and of entries C and Eof Table 2 show that the goodness of fit as measured by the values of σ_1 , the standard deviation of an observation of unit weight, † is insensitive to a change in

* The thermal parameters β_{ij} are the coefficients in the exponent of the temperature factor $\exp - [\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl]$.

 $2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl]$. ** Reflection 342 was omitted from all refinements after it was noticed that the shape of its peak on the recorder chart was anomalous, probably because of an instrumental aberration.

† The quantity σ_1 is given by the expression $[\Sigma w_F^2(F_o^2 - F_o^2)/(n-p)]^{\dagger}$, where *n* is the number of observations and *p* is the number of parameters adjusted. Unit value is expected for σ_1 at convergence when the observational errors are normally distributed and correctly estimated and the model is correct.

the cut-off level of I_o from 26.61 to 19.80. The scale factor is similarly insensitive to this change. Comparison of entries A, B, and D shows that the fit is distinctly poorer when all of the data are used in the refinement. It is of interest that the discrepancy factor, whether calculated on |F| or on $|F|^2$, is a very unreliable index of quality of fit in these refinements.[‡]

The entries under F show approximately the quality of fit which might have been expected if there had been no perturbation from extinction. For this refinement the data corresponding to $I_o > 19.80$ were corrected by multiplication of each F_0^2 value by the reciprocal of the ordinate read from the curve of Fig. 1(c) at the appropriate I_o .

The shapes of the curves (a) and (c) of Fig. 1 are not precisely what one might expect. For one thing, it seems that our intensity measurements for the very weak reflections are on the average slightly high be-

[‡] The fact that the discrepancy factor computed on |F| can equal or exceed the factor computed on $|F|^2$ has been discussed by Brown (1966).

Fig. 1. Curves showing the agreement between the values F_c^2 and F_o^2 as a function of intensity (see text). The numbers attached to the data points are the numbers of reflections included in the ranges of intensity over which the averages were taken.

Table 2. Description of the six different refinements to convergence

In all six cases the scale factor on $|F_c|$ and the three coordinates and six anisotropic thermal parameters of each atom were adjusted. The scattering factor of fluorine was fixed at 0.55×10^{-12} cm throughout. The scattering factors of potassium and niobium were held fixed in refinements A, B, and D at 0.35×10^{-12} cm and 0.691×10^{-12} cm but were adjusted in C, E, and F. The values of the discrepancy indices in parentheses were computed from all 1355 data

	Number of	Scattering factors derived	Scale factor	$(\Sigma F_o ^x -$	$ F_c ^x)/\Sigma F_o ^x$	
Refinement	data included	(units of 10^{-12} cm)	derived	x=2	x=1	σ_1
A	1355	not adjusted	0.984 ± 0.003	0.081	0.090	1.20
В	1278	not adjusted	1.006 ± 0.003	0.095	0.103	1.14
	$(I_0 \le 26.61)$	-	_	(0.090)	(0.092)	
С	1278	$f_{\rm Nb} = 0.695 \pm 0.005$	1.001 ± 0.004	0.094	0.103	1.13
	$(I_0 \le 26.61)$	$f_{\rm K} = 0.370 \pm 0.004$		(0.090)	(0.092)	
D	1243	not adjusted	1.014 ± 0.004	0.104	0.110	1.14
	$(I_0 \le 19.80)$	-		(0.094)	(0.093)	
Ε	1243	$f_{\rm Nb} = 0.692 \pm 0.005$	1.009 ± 0.004	0.103	0.109	1.13
	$(I_0 \le 19.80)$	$f_{\rm K} = 0.370 \pm 0.004$		(0.094)	(0.093)	
F	1355	$f_{\rm Nb} = 0.695 \pm 0.003$	1.005 ± 0.003	0.070	·	1.11
	(corr. data)	$f_{\rm K} = 0.366 \pm 0.003$				

cause of some systematic errors of unknown origin, possibly effects of multiple reflection. Although curves (a) and (c) give a rather exaggerated impression of this effect, curves (b) and (d) show that the systematic error is not large in relation to the standard error of measurement. At high intensities the ratio $\langle F_o^2 \rangle / \langle F_c \rangle$ does not fall so abruptly from unit value as one would expect for an extinction effect. The detailed shape of the curve will be affected, however, by anisotropy in the extinction and, possibly, by some errors from other sources. In any case, we make use of the curve mainly to avoid the inclusion of questionable data in the refinement, not for any quantitative analysis of extinction effects.

The sets of atomic coordinates from the various refinements differ only slightly from each other. From refinements *B*, *C*, *D*, and *E*, the average ratio over all 30 coordinates of the range of coordinate variation to the corresponding coordinate standard error is about 0.3 and the extreme ratio is 0.7. Even when refinement *A* is included, the average and extreme ratios are only 0.6 and 1.2. Between *D* and *E*, which differ only as

Fig. 2. Final composite three-dimensional Fourier map of the asymmetric unit of the K₂NbF₇ structure. The direction of view has direction cosines 0.0, -0.669, -0.743 with respect to the crystal axes **a**, **b**, **c**. The contour interval is 0.5 in units of 10⁻¹² cmÅ⁻³. The lowest contour is at the 0.5 level.

regards adjustment of f_{Nb} and f_{K} , the average ratio is 0.2 and the extreme is 0.4.

In general, the thermal parameters are different only by similar small amounts from one refinement to another. The largest shifts noted are the increases of about two standard deviations in the β_{ii} parameters of the potassium ions from B to C and from D to E, which accompany the increase in the value of $f_{\rm K}$. The inclusion in refinement A of the data affected by extinction is compensated for largely by a change in the scale factor, but partly by slight decreases in most of the β_{ii} .

For no single parameter is there a significant change in the standard error from one refinement to another. It is interesting, however, that the computed errors of the β_{tt} parameters of niobium and potassium are all 10 to 15% larger when f_{Nb} and f_K are included in the least-squares adjustment, reflecting the strong correlation between the scattering factor and the parameters β_{tt} of a given atom.

It would have been unnecessary to adjust the scattering factors $f_{\rm Nb}$ and $f_{\rm K}$, as was done in refinements C, E, and F, if these parameters had already been precisely determined. However, the tabulated values (Bacon, 1963) of $f_{\rm Nb}$, $f_{\rm K}$, and $f_{\rm F}$ are certainly subject to revision. They were determined from powder data, along with the scattering factors of many other elements, by Shull & Wollan (1951), who claimed in general only an accuracy of 3 to 4%. Hughes & Harvey's (1955) estimates of the standard errors of the coherent scattering cross-sections correspond to standard errors of about 1.7, 3.5, and 4.0% in the values $f_{\rm Nb}$, $f_{\rm K}$, and $f_{\rm F}$, respectively. Since scale factors are normally obtained in leastsquares refinements of crystal structures with considerably smaller standard errors than these, it seemed to us desirable to attempt refinement of the relative values of the scattering factors. From our results (Table 2) the true value of $f_{\rm K}$ relative to the value 0.55 cm⁻¹² for fluorine* appears to be 0.370 ± 0.004 cm⁻¹², significantly different from the tabulated value 0.35 cm^{-12} . The value of $f_{\rm Nb}$ is not changed significantly. Although these

Table 3. Final atomic coordinates and thermal parameters of the K_2NbF_7 crystal structure (from refinement E)

	Fraction (stan	nal coordinat dard errors	es × 10 ⁴ × 10 ⁵)	Thermal parameters $\times 10^5$ (standard errors $\times 10^5$)									
Atom	x	y	z	β_{11}	β ₂₂	β ₃₃	β_{12}	β ₁₃	β ₂₃				
Nb	2718(20)	1288(9)	2229(14)	799(36)	157(7)	376(15)	3(12)	34(17)	20(8)				
K(1)	2397(46)	4404(19)	1833(31)	1699(82)	232(15)	698(37)	-42(27)	-37(41)	-40(18)				
$\mathbf{K}(2)$	7626(45)	2845(22)	4446(30)	1343(81)	424(18)	590(36)	- 8(30)	-1(42)	- 98(19)				
F(1)	463(28)	2431(13)	1994(20)	1188(46)	275(10)	759(22)	-152(18)	38(27)	10(13)				
F(2)	4573(31)	2567(14)	2114(24)	1198(47)	240(9)	1159(28)	116(18)	239(29)	99(14)				
F(3)	448(30)	1072(14)	3880(21)	1326(50)	355(11)	673(22)	59(18)	-288(27)	48(13)				
F(4)	4599(31)	1107(16)	4101(20)	1263(50)	542(13)	530(21)	81(20)	223(27)	137(14)				
F(S)	2166(41)	-207(15)	2159(30)	3041(81)	228(10)	1682(40)	296(22)	- 1043(47)	-198(16)				
F(6)	1875(46)	1216(21)	63(25)	3675(90)	834(20)	633(24)	- 949(35)	628(39)	- 278(19)				
F(7)	5572(31)	792(15)	1317(24)	1336(52)	407(12)	927(26)	- 142(20)	- 337(29)	15(14)				

^{*} The choice of the scattering factor of fluorine as reference is arbitrary.

Table 4. Observed and calculated structure-factor squares

Reflections are identified by the indices h and l in the sub-headings and the index k under the main heading K. For each reflection $|F_c(hkl)|^2$, $|F_o(hkl)|^2$, and the standard error $\sigma_{F^2}(SIG)$ are given (all in units of 10^{-26} cm²), along with the sign of $F_c(hkl)$. A letter to the left of an index k indicates omission of the reflection in the final refinement, because of extinction error (E), an aberrant measurement (A), or a missing observation (M).

ĸ	CALC	085	510	K	CALC	08 S	SI G	ĸ	CALC	085	510	•	CALC	OPS	516	*	CALC	085	\$10	ĸ	CALC	085	\$1 G	ĸ	CALC	CBS S	16
•••	٥	K 0	•••	•••	0	K Ó	•••	•••	,	K 0	•••	•••	1	к ч	•••	•••	I.	K 8	•••	•••	2	K Z	•••	•••	2 1	6	•••
0 2 4 6 8 10 12 16 18	44630 22 486 5590 6231 42 39 377 1046 189	13 491 4872 5691 25 25 343 1078 158	+ 19 - 146 - 174 + 20 - 24 - 26 - 45 - 30 -	4 5 6 7 8 9 10 11 12 13	287 21 19 3275 397 1230 347 72 354 5	.271 30 26 3311 321 1229 308 86 366	56 + 56 + 58 - 118 + 40 - 59 - 58 + 44 + 42 -	13 14 E 15 16 17 18 19	903 114 970 22 59 94 	921 127 2068 86 146 91 0 K 1	55 - 26 - 76 - 29 - 42 + 41 + 40 +	7 8 9 10 11 12 13 14	468 1178 107 487 174 107 532 242	538 1145 91 503 132 54 556 324	40 - 58 - 43 + 36 - 48 - 44 +	5 6 7 8 9 10	223 448 7 118 90 1 443 1	175 478 0 141 161 450 K -8	38 - 42 - 34 - 35 - 37 - 39 - 51 -	7 8 10 11 12 13 14	363 91 65 220 1547 479 208 281 2	374 76 130 226 1527 518 183 353 K -2	34 - 54 - 41 + 60 + 45 - 30 - 43 +	0 1 2 5 6 7 8 9	91 22 194 2948 949 1126 214 3 60	117 73 172 2722 1 932 1225 229 15 89 42	27 - 25 - 55 + 55 + 38 + 35 + 35 - 35 -
••••	0 46	к I 51	•••	E 15 16 17	55 2006 31 99	156 2000 1 76	41 + 88 + 40 + 39 -	E 2 3	587 127 429 201	569 145 404 202	21 + 12 + 18 - 15 +	E O I E 2	2746 954 1316	2402 903	78 · 35 ·	0	284 167 18 65	232	57 + 56 + 32 +		216	268 180 255	17 -	10 11	1 4 2	53	34 - 37 -
E 2 3 4 5	2433 44 4	2235 46 0 376	70 - 12 - 10 - 19 +	•••	0	K 7 65	•••	5 E 6 E 7 8	144 1323 2896 534	157 1236 2697 537	16 + 45 - 88 + 28 +	3	1093 215 979	20% 9%2 8%	41 + 20 ~ 38 - 20 -	5	602 439 282 72	582 465 356	43 - 41 - 38 +	E 5	1414 1954 844	1470 1786 875	50 - 60 - 36 •	E 1	298 1759	322 1734	28 - 72 +
E 6 7 8 9	4801 3H 1111 3	4389 47 1062 5	137 + 17 - 41 + 20 +	E 2 3 4 5	1957 1 360 719	1854 36 371 761	77 + 38 - 42 + 49 -	E 9 10 11 12	2416 152 649 98	2221 110 590 87	85 + 39 - 47 - 40 +	7 8 9	11C7 75 181 213	1134 73 142 260	54 - 40 - 44 -	8 9 10	964 161	992 138 11	58 + 42 + 42 -	8	32	18	27 + 30 +	3	1009 276 920	1073 422 992	56 - 42 + 56 +
10 11 12 × 13	59 110 0 321	81 99 0 0	93 - 46 - 54 - 29 •	6 7 8 9	193 255 289 108	215 169 265 117	37 - 36 - 58 - 34 -	13 14 15	537 358 1	547 319 0	45 - 42 - 40 •	11	13 17 356 32	0 42 328 70	54 + 33 + 43 - 41 +	•••• 1 2	1 22 540	к 9 30 594	••• 35 - 46 •	14 12 13	196 1697 261 21	226 1606 308	39 - 72 - 39 + 38 +	7 8 9	999 52 405 152	871 78 432 154	52 - 35 - 42 + 38 -
15	465 145 20 109	421 170 32 83	43 + 40 + 40 + 43 -	10 11 12 13	20 250	321 62	36 + 41 + 42 + 42 +	E 1 2	980 134	к -1 938 152	31 - 12 -	•••	1 2262	× 5 2058	••• 76 .	3 5 6	16 - 100 49	33 185 4 60	35 + 36 - 37 + 38 -	••••	2	× 3 3	•••	11 12	38 1 2 K	0	30 . 43 .
•••	192 0	28 87 K 2	40 - 42 -	14	58	93 14 44	40 - 37 -	5	571 13 625	531 46 605	13 + 23 - 14 + 28 -	E 2 4 5	1378 150 436 27	1410	58 + 28 - 35 - 29 -	••••	25	K -9	•••	E 2 3 4 5	2094 35 17 240	2040 34 12 244	68 - 16 - 17 + 28 -	1 2 3	741 673	741 663 103	50 + 48 + 35 -
E 0 1 2	2155 71 14 724	1989 91 42	62 - 10 - 10 +	0 1	12	204	34 · 36 ·	8 9 10	21 704 455	52 736 565	19 +	8	258 115 630	237 118 6D1	42 - 44 - 44 -	23	1553	1576	35 - 69 + 34 + 36 -	6 7 E 8 9	668 786 2108 289	746 806 2044 411	33 + 46 + 82 + 42 +	5 67	518 0 732 113	457. 43 668 65	42 + 34 + 47 - 36 +
E 4 E 5 7	2225 1340 175	2077	68 - 46 - 19 • 23 -	3 E 4 5 6	1535	1582 2372 34	69 - 92 - 32 •	12	192	50 136	35 - 39 + 37 +	11	389 85 55	352 128 73	41 - 37 + 40 +	7	1066	1129	50 + 40 +	11	124 267 433	128 252 444	36 + 40 + 44 -	10	515	527 34	36 - 46 • 38 -
8 9 E 10 E 11	995 54 1973 3442	1008 89 1911 3252	41 - 22 - 80 + 118 +	7 8 9	83 19 787 369	104 0 736 399	36 - 36 + 53 + 46 +	•••	1	K 2 922	•••	•••	1 377 1345	K -5 443 1283	••• 32 - 54 •	, ,	632 1834	543 1797 34	51 + 80 +	••••	2	оо к -3 174	•••	1 2	660 24	62% 38	48 · 35 ·
12	241 106 104 65	188 61 95 51	37 - 35 + 36 + 40 +	11 12 13	449 41 299 1	459 5 282 40	49 - 42 - 46 - 38 -	1 2 E 3 4	242 93 1569 192	275 81 1434 215	15 - 13 - 48 • 16 •	3 4 5 6	116 16 15 1341	1 39 42 30 1 3 30	20 + 27 - 29 + 52 -	3	478 252	540 336 K -10	47 -	E 2 3	4789 81 310	4310 53 281	135 + 17 + 16 - 30 +	¥ 5 6 7	28 56 231	54 47 240	33 - 33 - 37 + 38 -
16 17 18 19	899 710 686 70	893 857 741 67	59 - 56 - 54 + 41 +	•••	85	198 K 9	•0 -	5 6 7 8	38 2 185 81	53 0 187	15 + 16 - 27 + 21 +	7 8 9 10	130 435 0 57	106 474 0 88	41 - 34 + 36 +	0	46 59 0	91 110 49	41 - 41 + 39 -	E 6 7 8 9	34C5 1239 773 413	3093 1148 878 389	100 - 56 + 53 - 45 +	8 9 10	166 151 20	108	37 + 38 + 41 +
	0 19	к з		234	2% 2% 230	29	41 + 34 - 33 - 38 -	10	295 230 245 160	252 331 238	27 - 41 - 40 + 36 -	12	246 95 381	149 107 422	39 + 37 - 48 +	3 •••	59 458 . 2	29 442 K D	41 - 48 + +++	10 11 12 13	1236 7 112 146	1209 85 158	60 + 34 + 40 +	•••• 0	2 K 364 31	8 334 34	41 4 54 -
E 4 5	301 2295 197	282 2140 215 20	19 - 71 - 21 - 16 +	6 7 8 9	107	726	40 - 54 + 41 - 45 -	14	48	85 664 K -2	36 .	E 0 1 2	8130 41	7078 76	219 +	0 1 E 2	7 83 1048	67 953	15 + 12 + 34 -	•••	2	842 K 4	•••	3	283 230 147 923	346 286 86 909	59 + 40 - 36 - 53 +
7 8 9 10	131 188 3 69	101 182 1 82	20 - 24 + 35 + 38 +	10 11 12 13	250 364 14 33	292 419 0 70	47 + 47 - 39 + 39 -	0 E 1 2	417 1021 0	445 904 3	19 - 32 - 10 -	5 4 5 6	493 129 93 412	526 88 109 432	31 - 38 - 39 •	5 E 6 7	103 38 4470 251	127 36 4083 259	16 + 22 + 129 - 22 -	E 2 F 1	30 1374 608	31 1300 566	17 + 47 - 28 - 73 -	7 8 9	146 659 6	154 725 0	40 + 52 - 41 -
11 12 13	47 1074 147 642	48 1039 157 707	35 - 55 - 37 - 50 -	•••	ہ 0	15 K 10	39 +	3 4 5 6	31 780 172 90	72 716 157 75	12 - 28 - 19 - 19 -	7 8 9 10	747 1701 171 3	775 1665 173	50 · 72 · 37 · 34 -	8 9 10	173 397 14 114	143 381 60 144	22 + 31 - 27 + 29 -	5 6 7 8	111 15 662 418	72 691 487	30 + 32 + 46 -	•••	2 K 15 583	-8 34 586	*** 34 - 44 *
16	132 91 15	180 92	41 - 43 + 41 + 39 +	1 2 3	1758 593 2 107	1743 554 66 130	48 - 39 - 40 -	8 9	534 6 167 123	470 50 149 187	34 + 19 - 25 + 40 +		279	279 × -6	36 - 45 -	E 12 13 14 15	3255 19 1620 8	3047 17 1665 33	02 + 25 + 65 - 29 -	9 10 11 12	656 839 0 201	613 406 257	47 + 42 - 33 - 41 +	2 E 3 4 5	386 3376 59 1641	363 2989 1 32 1584	40 + 10 + 35 + 72 -
•••	0 313 5679	× 4	20 +	5 6 7 8	270 345 585 1046	321 309 528	45 + 47 - 53 + 66 +	12 13 14	77 762 59 84	159 749 58	36 + 52 + 58 -	E 0 1 2 3	2312 382 49	2437 384 63	82 - 35 • 21 - 29 •	17	42 2 2	75 29	41 - 42 - 39 -	•••	2130	× -4	•••	6 7 8 9	783 1112 89	0 804 1096 115	56 - 53 - 63 - 43 -
2 5	663 43 502 603	689 46 498 628	3G - 17 - 28 + 49 +	9 10 11 12	104 19 57 10	53 50 71 0	41 - 41 - 39 - 39 +	•••	1 21	× 3 55		4 5 6 7	5 504 45 8	400 400 70 3	35 - 44 + 37 + 37 -	1 2 E 3	161 3 1701	186	14 - 12 - 52 +	2 3 E 4	415 560 105 5622	446 595 89 5109	24 - 28 - 19 +	•••	2 X 544	0 589 129	••• 47 - 38 •
E 7 E 8 9	3098 1729 429	2877 1657 478	54 + 95 - 71 + 45 + 57 -	••••	0 858	K II 818	••• 57 -	E 2 4 5	958 200 1086 774	875 221 1022 843	33 + 17 - 38 + 54 -	10	282	130 311 59 3	47 - 33 + 38 -	5 E 6 7	803 345 2136 969	810 341 2009 999	32 - 22 + 74 - 48 -	5 6 7 8	1030 35 944 822	1002 52 866 840	47 - 30 + 55 + 54 -	5	99 1 186 2	126 0 242 27	39 + 37 + 12 + 12 +
11 12 13	335 381 171	301 319 183 0	38 - 39 - 37 - 39 +	3 * 5 6	88 12 313 81	92 14 346 61	43 + 40 - 48 + 41 +	E 7 8 9 10	1532 85 74	1451 70 22 38	53 - 23 - 36 - 53 -		1	K 7	•••	9 10 11	1079 101 238 339	1122	58 - 48 + 40 -	10 11 12 E 13	625 95 1248 2786	566 92 1236 2752	47 - 35 + 63 +	•••	2 K 2159	-9 2173	*** 89 - 38 -
15 16 17 18	1055 300 108 311	1064 227 101 334	62 - 46 + 41 + 45 -	7 8 9 10	285 64 67	507 93 45	40 + 44 + 39 - 39 -	11 12 13	543 80 299	529 77 0 239	44 + 35 - 35 - 42 +	2345	20 501	100 0 592	38 - 36 • 37 - 84 •	13 14 15	1181 549 57	1222 542 136	63 + 49 - 43 -	••••	2 2 3 म	× 5 272	•••	3 E 5 6	442 8 2214 84	386 0 2075 48	45 + 38 - 87 +
•••	0 2265	× 5 2135	••• 71 •	•••	0	× 12 159	42 -	•••	1 1593	K -3 1463	•••	8	92 ?	350 122 D 15	39 + 36 + 34 + 35 -	••• E E 2	2 1508 1393	K -1 1362 1260	45 - 43 -	2345	126	602 24 134 28	41 + 20 + 32 + 34 +	•••	2 K 14j	10	•••
2345	1157	28 1159 21 1169 1138	10 - 45 - 18 + 48 - 55 +	234	31 95 439 229	122 568 205	59 + 59 + 50 + 44 -	2 3 E 5	127 0 756 1292	163 41 753 1297	15 + 14 - 32 + 47 -	•••	43 44 1	80 51 K -7	37 + 41 +	5 5 6	588 2055 56 656	597 1889 65 657	25 + 63 + 18 + 30 +	6 7 8 9	757 833 233	750 80% 15%	50 - 53 - 37 - 32 -	•••	194 2 K	94 -10	•••
E 7 8 E 9 10	2308 361 3268 56	2224 426 3197 54	87 + 44 - 115 + 34 -	, ,	139 215	203 198 K D	41 + 42 -	7 8 9	939 437 3	918 399 43 27	38 + 28 + 37 - 46 -	1 2 3	5 27 10	44 80 25 37	37 - 37 • 36 • 36 •	8 E 9 10	431 2658 140	53 12 2482 79	20 - 39 - 40 -	10 11 12	59 172	80 103 145	52 - 55 • 42 -	•••	650 U 3 K	589 70 0	55 • •1 -
11	70 19 877 897	72 0 939 891	35 - 35 + 57 - 58 +	E 2	95 1378 22	67 1320 27	7 - 42 + 9 -	12	18 421 230 20	52 461 225 40	54 + 44 + 41 - 38 -	5 6 7 8	55 467 497 39	486 481 60	34 - 41 + 43 -	12	203 33 598 360	250 36 541	38 + 36 + 50 + 51 +	1 2 3	52 177	~ -> 71 525	19 + 36 - 20 -		974 710 206 2952	1039 729 229 2673	59 - 31 + 27 -
15 16 17	35 5 43	5 20 68	42 - 59 + 39 +	E 3 E 5	1429 81 1C25 222	1311 98 932 214	43 + 12 + 34 - 18 +	•••	1 671	к њ 732	••• 30 -	10	461 47	406 36 42	43 - 37 • 44 -	••••	2 623	× 2 606	••• 26 •	5 6 7	656 608 325 824	668 535 311 760	42 - 42 - 42 • 53 -	E 5 7	23 1381 60 583	26 1403 21 605	24 - 51 + 28 +
•••• [182 1864	187	23 -	8 9 10	2458	2268 129 679 68	20 + 32 + 27 +	234	362 67 1 3	387 88 28	22 + 18 - 16 -	••• 0	461 166	K 8 452 121	42 - 36 •	E 2 E 3 E 4	40 4561 4066 1328	54 3995 3487 1310	14 + 125 + 110 + 53 -	8 9 10	44 0 130 261	28 72 152 242	35 - 33 + 37 + 41 +	8 9 10	0 362 41 271	30 425 25 269	26 · 33 · 24 - 29 ·
5	.,	ó	20 -	1 12	76	62	24 -	6	49	42	21 -	3	ŝ	50	33 •	£ 5	471	493	65 - 34 +	12	66	84	39 +	12 E 13	90 2745	99 ; 2630 10	25 - 03 •

Table 4 (cont.)

ĸ	C & L C	085 SIG	+ ×	CALC	085 516	×	CALC	CHS S	10	*	CALC	OHS S	16	ĸ	CALC	085	516	ĸ	CALC	085	516	ĸ	CALC	LES	516
•••	3	K 0	• •••	3	K 4		5	к -8	•••	•••	•	K - 3	•••	•••	4	к -8	•••	•••	5	K -4	•••	•••	6	- 2	•••
14	3	17 28	- 12	182	210 42 -	ę ș	64 519	51	40 -	3	366	429	42 -	0	4 327	0 365	38 + 45 -	E ()	2638	2374	92 + 35 +	5	44	28 0	57 .
16	211	0 43	<u>:</u>	3	K -4		3	K 9		5	5 63	25	38 · 36 ·	23	45 678	92 689	39 + 52 •	2	32 45	30 24	36 - 35 -	2 3	12 45	22 96	56 • 57 -
18	5	0 40	• .	47	0 27 4	1.	717	657	52 -	8	82 50	38 32	48 - 34 -	5	28	1278	67 - 43 •	5	C C	39	35 +	5	271	292	48 -
•••	3	K 1 +4	ε 2	58 1820	58 22 -	23	1586	1692	40 -	10	20	489	- s	•••	5	ĸO	•••	7	70	45	39 -	î	1	02	41 -
εż	1855	1771 60		510	463 41 4	5	476	450	50 +	12	638	750	57 •	0	85	92 2231	30 + 1 90 +	9	706	712	56 +	·,			
5	151	168 21	-	730	716 50 -		3	K -9		•••	4 1	к 4	•••	23	105	91	35 + 26 +	•••	5	K 5	•••		241	273	48 +
67	1303	1225 56 312 38	- 8	71 427	426 41 -	2	118	92 1611	41 +	0	99 665	181 756	41 + 53 +	5	204 0	1 ¥ 2 0	31 + 24 -	εż	585 2432	583 2395	50 · 95 ·	23	3 350	573	56 + 48 -
8	34 436	111 38	- 10	1031	28 34 - 894 57 -		34	19	41 -	2	236	81 325	44 - 1	E 7	2796	2540	100 -	3		51	35 •	5	1080	181	47 -
11	8UV 64 73	108 34		313	381 49 4	· '		y 0	45 -	5	202	233	34 •		1888	1775	68 + 28 +	6	1345	1322	69 -	7	110	113	44 .
13	0	0 38		3	K 5	E O	7669	6897 2	207 +	7	38	93 201	36 - 1 39 •	11	60 23	48	30 - 30 +	à	433	4 94	55 -	•••	ó	(-3	•••
•••	3	K -1 +4	. 2	307	252 41 -	2	189	205	23 • 20 -	10	127	743	51 + 41 -	13	27	27	42 +	•••	5	K -5	•••	2	375	349	42
ļ	5	65 24	•	1168	1098 59 4		32	301	25 +			U 	•	16	128	1 32	42 -	2	437	505	43 •	3	89	61	58 -
3	534	D 16		54 468	69 35 4 509 45 -	07	438	422	35 - 26 -	0	248	311	¥0 ·	•••	5	K I	•••	4 5	8 221	229	35 + 40 +	67	819	838 61	57 -
E 6	284	294 31	• 8	255 293	292 39 - 350 40 -	8	936	851	43 + 23 -	E I 2	2842	2662 1	46 -	2	531	497	50 • 53 -	67	585	562 0	48 - 40 •	•••	6	с ч	•••
8	108	162 38	•	199	196 42 4		20	187	25 +	4	2	51	36 +	3	232	233	45 -	•••	5	1 1 V Z		0	1	0	37 +
10	678 318	689 48 343 41	-	3	K -5 ++1	13	51	48	29 +	Å	25	71	33 · 67 ·	6	817	0 801	35 - 53 +	εO	8063	7339	241 +	2	635	8 684	38 - 57 -
12	206	2×1 39 0 37	-	35	67 34 4	15	191 332	101 303	45 + 47 +	8	406	372 67	43 + 36 +	8 9	1624	1636	75 + 74 +	2	73	34 35	37 + 38 -	5	346	314 88	50 - 43 -
	, 76	102 43		175 211 810	250 37 4	17	150	207	42 •	10	409	29	43 +	10	158	216	44 -	3	558 291 385	426	46 -	°	104	174 (-4	
E 0	5633	4798 150	- 6	211	248 43 4		62	94	22 +	•••	•	K 5	•••	•••	5	K - I	•••	ó	1685	1716	82 -	5	234	272	41 -
12	16 560	45 16 504 27	+ 1 - E	91 148	131 35 -	2	263 620	253 591	26 - 33 -	12	51	11	36 - 36 -	E 2	3010	2878	39 - 108 -	•••	5	K -6	•••	1 2	27	168	39 .
E N	5330	4700 148	: .	129	89 39 -	5	248	247	37 -		84	96 28	38 -		488	517	47 -	1	552	607	48 -	14	279	245	44 +
Ŷ	544	467 40	: ii	38	71 42 4	8	368	386	45 -	67	820 1554	746	51 +	6	137	141 765	37 + 50 -	3	917	929 533	56 - 46 -	6	67	168	44 -
8	53 1228	135 43	-	3	K 6	10	65 446	401	33 · 44 -	8	32 488	496	36 - 48 +	8	333	388 432	45 +	5	536	505 1126	48 + 63 +	•••	•	< 5	•••
10	788	718 50	•	793	27 36 -	12	684	25	53 - 39 -	10	374	383	•7 •		123	113	50 - 43 +	•••	5	K 7	•••	2	121	139	42 -
13	1636	1034 00		1162 309	1141 60 -	•••	4	K -1	•••	.	993	× -5	54 +	••••	5	K 2	•••	1 2	338 300	363 247	50 - 50 -	:	160	222	48 -
•••	3	K -2 •		122	118 37 -	2	523 606	546 614	29 - 32 +	23	271	12	34 + 39 -		1425	0 1512	38 • 73 -	3	74 69	198 155	42 - 42 -		6	K -5	•••
εο	1329	1451 51	• 8	23	0 34 4		202	261	26 + 32 -	5	578	566	33 - 43 -	E 2 3	2014	1881	82 -	•••	5	K -7	•••	2	320	216	45 +
Εż	1561	1488 52	i	ő ő	. 0 38	6	632	732	54 -	7	104	168	44 +	5	446	401	46 -	1 2	980 32	992 68	63 + 41 -	4	211	197	46 -
A 4 5	68 1358	297 23		3	x -6 •••	8	256 59	380 77	42 - 40 -	10	645 256	593 277	49 ·	8	450	461	58 • 46 •	3	372 78	377 85	47 - 43 -	•••	'	K 0	•••
. 7	96 0	0 35	- 1	9 152	48 37			10%	36 +	•••	4	K 6	•••	iů	1651	1 6 5 5	77 -	•••	6	K O	•••		1054	995	5U •
, i	71	108 38	-	71-	112 39			K 2	•••	0	603 403	573 435	47 - 44 -	•••	5	K -2	•••	0	1526	1615	61 - 34 -	3	523 601	555	44 -
12	797	886 53 103 36	:	95	149 35		528	532	32 -	23	450	202	38 - 44 -	E I	503 2062	582 2102	46 · 84 -	2	52	12	24 + 25 +	6	260	242	38 • 32 -
13	1778	1744 80		47	0 35 -	2	59	258	28 -	5	360	288	42 +	3	809	502 695	50 +	5	151	174	42 +	Ś	34	43	44 4
	882	903 37	+ 10	7	41 38		123	158	36 - 38 +	7	536 D	622 0	47 +	5	305	331	42 -	7	0	17	27 + 29 -	10	47	36	42 4
E 2 3	1386	1356 50	:	3	K 7 ••1	67	57 39	110	46 - 36 +	. *	402	565	51 -	7	825	938 138	50 + 41 +	10	521	570 92	42 -		7	ĸı	•••
5	375	366 37		208	24 33		885	870	40 - 55 -	.	4 1.8 L	228	34 -	ıŏ	715	652	57 +	12	92	40	42 +	1	94 1 k 11 2	125	46 4
7	1453	1521 69	-	108	138 37 -	11	38	107	38 ·	1 2	300 1 38	358	10 + 36 +	•••	5	K 3	•••	i i i	79	119	41 -	3	33	34	45 4
10	348 236	301 41 172 36	:	1786	1657 72		ł	к -2		3	861	931	33 · 53 ·	2	30 D	17	35 + 35 -	•••	6	к 1	•••	••••	1	K -1	•••
12	0 0	· /4 5/ 13 36	•	1258	1295 67 -	εo	2081	2004	69 - 26 -	67	21	33 15 704	35 -	1	397	432	44 +	2	317	287	46 +	2	53	161	45 4
•••	3	K -3 +0		3	K -7 •••		67	22	23 - 40 -	8	1094	1160	64 - 40 •	÷	340	515	42 + 35 -	4	10	109	35 + 37 +		,	K 2	
ī	966	975 38	-	695 2 18	730 47 0 33		150	130	39 + 52 +		4	к т	•••	8	175	218 394	40 - 47 +	1	83C 213	833 279	58 - 46 -	0	1495	1401	80 -
23	19	99 18 987 48 78 72	3	21	145 35 55 34 500 44		277	261	47 + 44 + 40 -	;	696	784	50 - 37 -		¥25 5	V18	64 -	*	۰ •	0 K - J	43 -	2	75	121	46 -
5	1000	888 49 77 26	:	5 344 1 1	416 41		83	84 507	35 - 46 +	5	226 286	195	42 + 43 +		15	,	36 +		12	î 0	34 -	•••	7	K -2	•••
7	1567 487	1546 70 552 47	-	3 9	0 37 8 41		1681	1708 0	77 - 41 -	6	77 57	128	36 • 40 •	2	425	356	40 + 38 -	2	1 3 52	73	35 - 56 -	1	156	194 84	47 46
10	1583 115 810	1588 66 75 39 880 54		3	к 8 ••	• ••••	٠	K 3	•••	l'	4	121 K -7	••••	5	/81 68	50	50 + 36 - 34 -	5	452 372	499 320	57 + 48 - 50 +	, ²	о55 В	576 K 7	57 4
12	76 608	16 37 639 52	:] 361 [44	412 43		50 568	54 668	86 + 47 -	1	. 4	0	36 -	7	4 38 65	423 74	43 + 38 +	7 A	69D 3	740	58 ·	9	298	243	50 -
•••	3	K 4 .	••	2 468 980	483 42		1258	534	47 + 63 -	E 2 3	2786	2673	102 - 37 +	iõ	203 75	221 60	44 - 47 -	•••	6	K 2	•••	2	155	184	48
Ģ	337	301 34	:	4 1458 5 76 5 300	104 38		52 52	0 333	37 - 41 -	5	5 70 610	24 21 550	30 - 38 - 50 •	•••	5	K 4	•••	0	1301	1263	67 .	4	17 4 56	0	47 - 48 -
E 2.	2299 488	2160 74 567 39	:	50	106 41		8 0 8 411	0 398	33 · 43 -	1 i	20	103	¥i -	E 0	2753 18	2552 37	101 - 33 •	23	257 670	239	43 + 54 +	1 ?	434	331	61 4
5	637 2117	587 44 2038 82	•	3	к -8 ••	· !!	650	641	36 +		4	к 8	•••	23	99 476	106	37 •	5	47	126	36 - 39 -	8	142	66	48 -
6 7	503	516 48 422 46 1000 67	<u>: </u>]	5 197 1 1160 2. 230	1015 59 253 38		: 52 -	88 K - 3	•2 -	1 2	233	245	45 - 45 -	5	216	171	40 +	7	49	38	45 - 41 -				
, 10.	, 73	0 33	:	1772	62 36			1 14	34 •	3	321	274	45 +	7 B	10	1178	37 .	ľ	·						
11	303	, \$30 43	-1- 1	5 46	47 37	1 2	865	911	51 -	1 5	55	48	42 -	1 9	46	29	42 -	1				1			

results should not be taken as final, we believe that collection of a large body of scattering-factor data from least-squares refinements of many different crystal structures may lead, on careful evaluation, to a more reliable set of nuclear scattering factors of the elements. The atomic coordinates and thermal parameters from refinement E should in principle be the most reliable. In any case, as already discussed, these parameters differ only slightly from those of the other sets. We therefore report them and their standard errors in Table 3. When converted to Å, the standard errors of the coordinates amount to about 0.001 Å for the niobium atom and 0.002 to 0.003 Å for the fluorine and potassium atoms.

Table 4 presents the values F_o^2 , σ_{F^2} , and F_c^2 , with the sign of F_c , for all of the observations.

A composite three-dimensional Fourier map is shown in Fig. 2. The F_o coefficients used in the synthesis were obtained from the set of F_o^2 data corrected for extinction that was used in refinement F. The signs were from the F_c values computed with the use of the parameters in Table 3. A final three-dimensional difference map showed only random background ripples. The greatest excursion of density on each side of zero was in magnitude only about 2% of the peak density of the niobium atom.

Structure and thermal motion

Structure

An understanding of the sense in which our results confirm those of Hoard may be reached quickly by viewing the shifts of atomic positions between the two structures (Table 5). The shifts are small in the sense that the basic geometric description of the crystal structure remains unchanged, including the description of the distorted NbF $_{7}^{2-}$ anion. On the other hand, the shifts are all large relative to the standard errors. The direction of the shifts of the various atoms vary widely. The two largest shifts, those of F(3) and F(6), are at right angles.

General features of the crystal structure are shown in the stereoscopic view of Fig.3. This view, showing a

Table 5. Shifts of atomic positions in the refinement of K₂NbF₇

Atom	Shift	Atom	Shift
Nb	0·036 Å	F(3)	0·106 Å
K(1)	0.046	F(4)	0.030
K(2)	0.066	F(5)	0.074
F(1)	0.026	F(6)	0.154
F(2)	0.060	F(7)	0.088

ball-and-stick model for the complex ion NbF $_7^{-}$, complements the packing drawing shown by Hoard in his Fig. 3(b).*

Details of the structure of the complex ion NbF₇⁻ are shown in Fig.4, where Nb–F bond lengths and F–F neighbor distances are given, and in Table 6, where F–Nb–F angles are given.[†] The first value in Fig.4 for each Nb–F bond length is the value of the internuclear separation computed directly from the coordinates of Table 3. The second value, in parentheses, has been corrected for the effects of thermal motion by the method of Busing & Levy (1964), assuming the so-called 'riding' model (see the discussion of thermal motion below). The range of Nb–F bond lengths after correction is 1.940-1.978 Å, only half as wide as the range 1.911-1.971 Å before correction.

The widely varying intraionic F-F neighbor distances (2.357-2.912 Å) and F-Nb-F valence angles

[†] The program of Busing, Martin & Levy (1964) was used in calculating distances and angles and in analyzing the thermal parameters. The least-squares covariance matrix was used in calculating standard errors.

Fig.3. Stereoscopic view of the K_2NbF_7 crystal structure. The direction of view is that of the vector -a. The axis **b** is vertical from top to bottom and the axis **c** is horizontal from left to right in the view. The reference asymmetric unit is the one within the cell outline at the upper left.

^{*} In comparing our Fig. 3 with Hoard's Fig. 3(b), one should note that the latter drawing is based on a left-handed coordinate system.

Fig. 4. Interatomic distances (Å) in the NbF²₇- ion. The Nb-F distances in parentheses have been corrected for thermal motion ('riding' model). The computed standard errors are 0.002 Å to 0.003 Å for the uncorrected Nb-F bond lengths and 0.003 Å to 0.004 Å for the F-F distances. The corrected bond lengths are thought to be accurate within 0.01 Å.

 $(73\cdot86^{\circ}-97\cdot74^{\circ})$ describe the irregular shape of the ion. The irregularities are, presumably, the result of electrostatic interactions between the fluorine atoms in the anion and the potassium ions which surround it. Fig. 5 shows the arrangement of the potassium ions about

Fig. 5. The NbF $_7^2$ -ion and surrounding K⁺ ions in the K₂NbF $_7$ structure (parallel projection). The computed standard errors of the K-F distances are 0.003 Å to 0.004 Å.

the anion, with all of the K-F near-neighbor distances given. Atoms F(1), F(2), F(3), and F(4) are each in contact with three potassium ions in an approximately trigonal arrangement about the axis through niobium and fluorine. Atoms F(5), F(6), and F(7) are each in close contact with only two potassium ions, although F(5) and F(6) each have an additional potassium neighbor at a distance distinctly greater than the average K-F distance. The shortest three of the seven Nb-F bonds are those involving these fluorine atoms having only two potassium near neighbors.

Table 6. Angles F(i)-Nb-F(j) in the NbF₇²⁻ ion The standard errors of these angles are all about 0.1°

Fig. 6. Perspective views showing the coordination about K(1) and K(2) in K_2NbF_7 .

The ninefold coordination about each of the two potassium ions (Fig. 6) may be conceived as derived by considerable distortion from an arrangement in which eight fluorine atoms are at the corners of a cube and a ninth atom projects from one cube face. The range of K-F distances is much the same for the two potassium ions.

The shortest interionic F-F distances are: 3.07 Å between F(2) and F(4) in glide-related ions; 3.08 Å between F(7) and F(7) centrosymmetrically related (compare with Hoard's distance 2.91 Å); and 3.18 Å between F(6) and F(7) in centrosymmetrically related ions). There are many F-F distances near 3.30 Å. The range of F-F distances is quite normal.

Thermal motion

Principal-axis transformations have been performed on the thermal-parameter ellipsoids of the ten atoms of the asymmetric unit. The root-mean-square axial displacements and the axial orientations are given in Table 7. The thermal motion of the NbF $_{7}^{2-}$ ion and the 10 K⁺ ions which surround it can be visualized readily from the stereoscopic drawing of Fig. 7, in which the direction of view is almost the same as that in Figs.4 and 5. In the drawing the thermal motion of each atom is represented by a thermal-motion probability ellipsoid (Johnson, 1965) centered at the mean position of the atom. The lengths of the principal axes represent the r.m.s. vibrational displacements in the principal-axis directions on a scale 2.25 times that of the internuclear separations. The ellipsoids are, therefore, the 83% probability ellipsoids.

Originally we had supposed that the thermal parameters of the atoms of the NbF₂⁷⁻ ion would likely be interpretable readily in terms of rigid-body motion of the ion. One can see, however, merely from inspection of Fig.7 that the large r.m.s. displacements of F(5) and F(6) are inconsistent with the rigid-body model. Detailed analysis (Cruickshank, 1956) does show that the thermal parameters of the other six atoms describe fairly well the motion of a rigid structural unit. The analysis is of doubtful utility, however, because its ultimate purpose, the correction of bond lengths, can be achieved in a more direct manner in this particular case through use of the 'riding' model (Busing & Levy, 1964).

That the riding model is appropriate for calculation of corrections to the Nb-F bond lengths is a direct conclusion from consideration of data in Table 7. The motion of the niobium atom is almost exactly isotropic. For each fluorine atom F(i) the principal axis along which the r.m.s. displacement is least is nearly parallel (within 8°) to the corresponding vector Nb $\rightarrow F(i)$. The r.m.s. displacement along this axis is in each case very

 Table 7. Description of atomic thermal-parameter ellipsoids: orientations of the principal axes and root-mean-square axial displacements

The orientation of each principal axis is specified with respect to the crystal axial vectors **a**, **b**, **c** and, for each fluorine atom F(i), with respect to the vector Nb \rightarrow F(i). Standard errors appear in parentheses.

			Angle (°) to reference axis										
Atom	Principa	l R.m.s.			^ o	NIL E(i)							
Alom	axis		a 77(15)	U	C	$NO \rightarrow I'(t)$							
Nb	1	0.110(3) A	77(15)	141(13)	54(9)								
	2	0.116(3)	37(15)	61(17)	70(15)	—							
77/1	3	0.123(3)	56(14)	113(10)	137(9)	_							
K(1)	1	0.134(4)	81(5)	161(6)	10/(/)								
	2	0.162(4)	9/(1/)	108(7)	19(10)								
17 (0)	3	0.1/3(4)	11(11)	84(7)	81(16)								
K(2)	1	0.140(5)	88(17)	110(3)	160(4)								
	2	0.153(5)	178(15)	90(7)	92(16)								
	3	0.191(4)	91(5)	160(3)	70(3)								
$\mathbf{F}(1)$	1	0.125(3)	40(3)	130(3)	85(3)	172(3)							
	2	0.165(3)	53(15)	41(11)	75(52)	83(4)							
	3	0.168(3)	77(33)	82(40)	165(50)	87(7)							
F(2)	1	0.126(3)	131(6)	139(6)	90(3)	172(6)							
	2	0.146(3)	135(6)	52(6)	111(2)	82(6)							
	3	0.214(3)	75(2)	104(2)	159(2)	90(1)							
F(3)	1	0.125(3)	44(2)	76(3)	130(2)	172(2)							
	2	0.172(3)	113(16)	24(20)	95(19)	86(4)							
	3	0.177(3)	125(12)	108(24)	139(4)	96(3)							
F(4)	1	0.120(4)	123(4)	81(2)	145(3)	178(3)							
	2	0.155(3)	145(3)	108(2)	61(4)	91(4)							
	3	0.217(3)	80(2)	160(2)	107(1)	92(1)							
F(5)	1	0.122(3)	102(2)	166(1)	96(2)	5(1)							
• •	2	0.175(3)	138(1)	85(3)	49(1)	89(3)							
	3	0.296(3)	129(1)	77(1)	138(1)	95(1)							
F(6)	1	0.132(3)	104(3)	97(3)	165(1)	5(3)							
	2	0.174(3)	135(1)	46(1)	85(4)	86(4)							
	3	0.328(3)	132(1)	135(1)	75(1)	92(1)							
F(7)	1	0.132(3)	30(2)	106(3)	115(2)	4(3)							
. ,	2	0.181(3)	90(4)	32(5)	122(5)	94(3)							
	. 3 .	0:201(3)	120(2)	117(6)	137(5)	89(2)							

Fig. 7. Stereoscopic view showing thermal-motion probability ellipsoids of the NbF $_{2}^{2-}$ ion and the surrounding K⁺ ions.

close in magnitude to the isotropic displacement of the niobium atom. The two larger displacements of each atom F(i) are nearly perpendicular to the Nb \rightarrow F(i) vector. Evidently, the motion of each fluorine atom is to a close approximation a librational motion about the central niobium atom compounded with the translatory vibrational motion of the niobium atom. Thus, the NbF₇²⁻ ion is an almost ideal case for use of the riding model in computing corrections to bond lengths.

The exceptionally large vibrational displacements of F(5) and F(6) seem plausible in view of the packing about these atoms. As already noted, the arrangement of potassium ions about F(5) and F(6) is different from that characteristic of most of the other fluorine atoms. The large displacement, for F(5) and for F(6), is nearly perpendicular to the plane of the fluorine atom and its two close potassium neighbors. The relation of two F(7) atoms across a symmetry center at the unusually short distance 3.08 Å is just such as to inhibit the similar large displacement that might be expected for atom F(7).

We thank Dr O. L. Keller for suggesting this research and Dr H. A. Levy for helpful advice and criticism. We are grateful to Dr C. K. Johnson for much assistance in the preparation of our drawings, most of which were made with use of his automatic plotter program (Johnson, 1965), and for assistance in the determination of the cell parameters.

References

- BACON, G. E. (1962). *Neutron Diffraction*. 2nd. ed. London: Oxford Univ. Press.
- BROWN, G. M. (1966). Acta Cryst. In the press.
- BROWN, G. M. & LEVY, H. A. (1964). J. Phys., Paris, 25, 497.
- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory, ORNL-TM-305.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory, ORNL-TM-306.
- BUSING, W. R., SMITH, H. G., PETERSON, S. W. & LEVY, H. A. (1964). J. Phys., Paris, 25, 495.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 754.
- HOARD, J. L. (1939). J. Amer. Chem. Soc. 61, 1252.
- HUGHES, D. J. & HARVEY, J. A. (1955). *Neutron Cross* Sections. Upton, New York: Brookhaven National Laboratory.
- JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal-Structure Illustrations. Oak Ridge National Laboratory, ORNL-3794.
- Keller, O. L., Jr. (1963). Inorg. Chem. 2, 783.
- PETERSON, S. W. & LEVY, H. A. (1957). Acta Cryst. 10, 70.
- SHULL, C. G. & WOLLAN, E. O. (1951). Phys. Rev. 81, 527.
- WEHE, D. J., BUSING, W. R. & LEVY, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. Oak Ridge National Laboratory, ORNL-TM-229.